ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕОБРАЗОВАТЕЛЬНОЕ УЧ-РЕЖДЕНИЕВОРОНЕЖСКОЙ ОБЛАСТИ «ХРЕНОВСКОЙ ЛЕСНОЙ КОЛЛЕДЖ ИМЕНИ Г.Ф.МОРОЗОВА»

РАБОЧАЯ ПРОГРАММА

ОП.11 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ

профессионального цикла программы подготовки специалистов среднего звена по специальности 15.02.08 «Технология машиностроения»

ОДОБРЕНО

МО препод. профессионального цикла УГ спец. 15.00.00 Машиностроение». 09.00.00 «Информатика и вычислительная

техника»

Председатель _ 01.09.2021 г

Утверждаю заместитель директора по учебной работе

Т.Г. Круподерова

«<u>01</u>» сентября 2021 г.

Согласовано

Е.В. Хрулева

«01» сентября 2021 г

Разработчик:

Гусева Н.Н. преподаватель ГБПОУ ВО «Хреновской лесной колледж имени Г.Ф.Морозова».

Программа рекомендована методическим объединением профессионального цикла укрупненных групп специальностей 15.00.00 «Машиностроение», 09.00.00 «Информатика и вычислительная техника» государственного бюджетного профессионального образовательного учреждения Воронежской области «Хреновской лесной колледж имени Г.Ф. Морозо-Ba».

Протокол № «1» от « 01» сентября 2021 г.

СОДЕРЖАНИЕ

Название разделов		
1.	Паспорт рабочей программы дисциплины	4
2.	Структура и содержание дисциплины	6
3.	Условия реализации рабочей программы дисциплины	10
4.	Контроль и оценка результатов. Освоения дисциплины	12

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ «Информационные технологии в профессиональной деятельности»

1.1 Область применения рабочей программы

Рабочая программа дисциплины «Информационные технологии в профессиональной деятельности» является частью программы подготовки специалистов среднего звена ГБПОУ ВО «ХЛК им. Г.Ф.Морозова» в соответствии с ФГОС по специальности 15.02.08 Технология машиностроения.

Рабочая программа дисциплины может быть использованав дополнительном профессиональном образовании и профессиональной подготовке в области машиностроения металлообработки при наличии среднего (полного) общего образования. Опыт работы не требуется.

1.2. Место дисциплины в структуре основной профессиональной образовательной программы:

Дисциплина «Информационные технологии в профессиональной деятельности» относится к профессиональному циклу программы подготовки специалистов среднего звена.

1.3. Цели и задачи дисциплины – требования к результатам освоения дисциплины:

Базовая часть.

В результате освоения дисциплины обучающийся должен

уметь:

- -оформлять конструкторскую и технологическую документацию посредством САD и САМ:
- проектировать технологические процессы с использованием баз данных типовых технологических процессов в диалоговом, полуавтоматическом и автоматическом режимах;
 - создавать трехмерные модели на основе чертежа.

В результате освоения дисциплины обучающийся должен

знать

- базовые, системные, программные продукты и пакеты прикладных программ;
- -классы и виды CAD и CAM систем, их возможности и принципы функционирования;
- виды операций над 2D и 3D объектами, основы моделирования по сечениям и проекциям;
 - способы создания и визуализации анимированных сцен.

<u>Вариативная часть</u> направлена на углубление знаний об автоматизация технологической подготовки производства с помощью CAD системы Компас 3D (тема 3.1, 3.2), углублении знаний 3D-моделировании и создание сборочных чертежей в САПР Компас 3D (тема 2.3); изучения современного принципов современного компьютерного моделирование в машиностроении.

В результате освоения вариативной части дисциплины обучающийся должен уметь:

- 1. Классифицировать CAD/CAM/CAE систем;
- 2. Создавать 3D-модели с помощью Компас 3D;
- 3. Создавать сборочные чертежи с помощью Компас 3D;
- 4. Создавать рабочие механизмы с помощью Компас 3D.
- В результате освоения вариативной части дисциплины обучающийся должен знать:
- 1.Области применения CAD/CAM/CAE систем;
- 2. Принципы моделирование в машиностроительном производстве.

Содержание дисциплины должно быть ориентировано на подготовку студентов к овладению профессиональными компетенциями (ПК):

ПК 1.1. Использовать конструкторскую документацию при разработке технологических процессов изготовления деталей;

- ПК 1.2. Выбирать метод получения заготовок и схемы их базирования;
- ПК 1.3. Составлять маршруты изготовления деталей и проектировать технологические операции;
 - ПК 1.4. Разрабатывать и внедрять управляющие программы обработки деталей;
- ПК 1.5. Использовать системы автоматизированного проектирования технологических процессов обработки деталей;
- ПК 2.1. Участвовать в планировании и организации работы структурного подразделения;
 - ПК 2.2. Участвовать в руководстве работой структурного подразделения;
 - ПК 2.3. Участвовать в анализе процесса и результатов деятельности подразделения;
- ПК 3.1. Участвовать в реализации технологического процесса по изготовлению деталей;
- ПК 3.2. Проводить контроль соответствия качества деталей требованиям технической документации.

В процессе освоения дисциплины у студентов должны формировать общие компетенции(ОК):

- OК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес;
- OK 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество;
- OК 3. Принимать решения, в стандартных и в нестандартных ситуациях и нести за них ответственность;
- ОК 4. Осуществлять поиск, и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития;
- ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности;
- OK 6.Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями;
- OK 7. Брать на себя ответственность за работу членов команды (подчиненных), за результат выполнения заданий;
- OK 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации;
- ОК 9. Ориентироваться в условиях частной смены технологий в профессиональной деятельности.

1.4. Количество часов на освоение программы дисциплины:

максимальной учебной нагрузки обучающегося-126часов, в том числе:

- обязательной аудиторной учебной нагрузки обучающегося-84 часов;
- самостоятельной работы обучающегося -42 часа.

2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1. Объем дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	126
Обязательная аудиторная учебная нагрузка (всего)	84
в том числе:	
лабораторные работы	не предусмотрено
практические занятия	68
контрольные работы	не предусмотрено
курсовая работа	не предусмотрено
Самостоятельная работа обучающегося (всего)	42
в том числе:	
самостоятельная работа над курсовой работой	-
работа с информационными источниками	14
выполнение рефератов	14
внеаудиторная самостоятельная работа	20
Промежуточная аттестация в форме дифференцированного зачета	ДЗ

2.2. Тематический план и содержание дисциплиныИнформационные технологии в профессиональной деятельности

Наименование раз- делов и тем	Содержание учебного материала, лабораторные и практические работы, внеаудиторная (самостоятельная) учебная работа обучающихся	Объем часов
1	2	3
Раздел 1.Компьютерн	ые технологии и моделирование в машиностроении	
Тема 1.1.	Содержание учебного материала	16
Автоматизация	1. Понятие информационных технологий	
проектно-	2. Этапы развития информационных технологий	
конструкторских	3. Составляющие и инструментарий информационных технологий	
работ в машино-	4. Информационные технологии в машиностроении. Оперативно-производственное планирование	
строении	5. Информационные технологии в машиностроении. Интегрированные системы автоматизированного проек-	
	тирования	
	6. Составляющие рынка информационных технологий в современном мире	
	7. Принципы автоматизации проектно-конструкторских работ	
	8. Общие сведения о 3D-моделировании	
	Лабораторные работы	
	Практические занятия	_
	Контрольные работы	_
	Самостоятельная работа обучающихся:	6
	Рефераты на темы: «Обзор отечественных машиностроительных САПР»	
	«История автоматизации машиностроения в России»	
	«Этапы развития САПР»	
P 2.01	«Международная классификация САПР»	
Раздел 2. Оформление	е конструкторской документации посредством САД-систем	
Тема 2.1. Использо-	Содержание учебного материала	-
вание САПР КОМ-	1. Принципы моделирования изделий в САПР Компас 3D	
ПАС 3D для авто-	Лабораторные работы	-
матизации проект-	Практические занятия	4
но-конструкторских работ	Практическая работа. Интерфейс программы Компас 3D. Горячие клавиши для навигации	
работ	Практическая работа. Работа с Менеджером документа, слоями и настройками программы Компас 3D	
	Самостоятельная работа обучающихся:	4
	Рефераты на темы:	
	«Общие сведения о концепции твердотельного моделирования» «Принцип объектной ориентированности САD-системы Компас 3D»	
	«Параметрический характер моделирования CAD-системы Компас 3D»	
	«Принцип ассоциативности CAD-системы Компас 3D»	
	«Типы документов САD-системы Компас 3D»	
Тема 2.2.	Содержание учебного материала	-
Моделирование	1 Технологии создания трёхмерных моделей деталей	
твердотельных де-	Лабораторные работы	

талей с помощью	Практические занятия	10
Компас 3D	Практическая работа. Модель «Вилка». Ориентация модели. Создание эскиза.	
	Практическая работа. Модель «Вилка». Операция выдавливания. Массивы.	
	Практическая работа. Модель «Вкладыш». Операция вращения.	
	Практическая работа. Модель «Лопасть». Кинематическая операция.	
	Практическая работа. Модель «Молоток». Операция по сечениям.	
	Контрольные работы	-
	Самостоятельная работа обучающихся:	6
	Рефераты на темы:	
	«Концепция, стратегия и базовые принципы CALS/ИПИ».	
	«Технологии поверхностного моделирования».	
	«Основные этапы жизненного цикла изделий и его автоматизации».	
	«Работа с информационными источниками»	
Тема 2.3.	Содержание учебного материала	-
3D-моделирование	1Работа в режиме деталь программы Компас 3D	
и создание сбороч-	Лабораторные работы	-
ных чертежей в	Практические занятия	14
САПР КО́МПАС 3D	Практическая работа. Модель «Держатель». Создание сборочных элементов: Стержень и Гайка.	
	Практическая работа. Модель «Держатель». Создание сборочного элемента: Опора.	
	Практическая работа. Модель «Держатель». Создание сборки	
	Практическая работа. Модель «Держатель». Создание чертежей и спецификации по сборке	
	Практическая работа. Модель «Корпус». Операции гибки, замыкания углов.	
	Практическая работа. Модель «Планка». Операции гибки и штамповки.	
	Практическая работа. Модель «Колодка обувная». Поверхность по сети точек.	
	Контрольные работы	_
	Самостоятельная работа обучающихся:	6
	Работа с техническойлитературой. Выполнениепрактических заданий по построению чертежей	
аздел3. Подготовка т	ехнологического процесса производства посредством САМ-систем	
Гема 3.1. Автомати-	Содержание учебного материала	-
вация технологиче-	1Назначение и принципы функционирования САМ-систем	
ской подготовки	Лабораторные работы	-
производства с по-	Практические занятия	10
мощью Компас 3D	Практическая работа. Модель Массажный коврик. Массив по таблице.	
	Практическая работа. Модель Контактный элемент Создание исполнений в деталях.	
	Практическая работа. Модель Контактный элемент Создание исполнений в сборке.	
	Практическая работа. Модель Контактный элемент Оформление чертежа и спецификации.	
	Практическая работа. Модель Редуктор. Спецификация. Группы компонентов.	
	Контрольные работы	_
	Самостоятельная работа обучающихся:	10
	Работа с техническойлитературой. Выполнениепрактических заданий по построению чертежей	10
Тема 3.2	Содержание учебного материала	_
Автоматизация	Преимущества и недостатки современных САМ-систем	
технологической	Лабораторные работы	

подготовки произ-	Практические занятия	30
водства с помощью	Практическая работа Модель Корпус с крышкой Учет допусков в модели.	
Компас 3D	Практическая работа Модель Корпус с крышкой. Проверка собираемости сборки	
	Практическая работа Модель Рейка. Создание и использование библиотеки моделей.	
	Практическая работа Модель Наушники. Создание зеркальной сборки.	
	Практическая работа Модель Трубка телефонная. Создание разъемного корпуса сложной формы.	
	Практическая работа Модель Рычаг. Проектирование с нескольких сторон.	
	Практическая работа Модель Петля мебельная. Моделирование по прототипу.	
	Практическая работа Модель Корпус дисковода. Проектирование снизу вверх с предварительной компоновкой.	
	Практическая работа Модель Степлер. Проектирование сверху вниз с предварительной компоновкой.	
	Практическая работа Модель Опора. Проектирование сверху вниз с преобразованием тел в компоненты.	
	Практическая работа Модель Фиксатор. Подготовка к коллективной работе.	
	Практическая работа Модель Фиксатор. Коллективная работа над сборкой.	
	Практическая работа Модель Фиксатор. Коллективная работа над сборкой.	
	Практическая работа Модель Фиксатор. Коллективная работа над сборкой.	
	Контрольные работы	=
	Самостоятельная работа обучающихся:	10
	Работа с техническойлитературой. Выполнениепрактических заданий по порстоению чертежей	
	Всего:	126

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ

3.1. Требования к минимальному материально-техническому обеспечению

Реализация дисциплины осуществляется влаборатории «Информационных технологий в профессиональной деятельности».

Оборудование учебного кабинета:

- рабочее место преподавателя;
- рабочие места для обучающихся (столы и стулья по количеству обучающихся);
- доска для письма;
- мультимедийный проектор;
- учебно-методическое обеспечение.

Оборудование лаборатории и рабочих мест лаборатории:

- рабочее место преподавателя;
- посадочные места для обучающихся;
- компьютеры по количеству обучающихся;
- принтер;
- учебно-наглядные пособия;
- интерактивная доска;
- комплект учебно-методической документации
- локальная компьютерная сеть;
- системное и прикладное программное обеспечение общего и профессионального назначения;
 - антивирусное программное обеспечение.

3.2. Информационное обеспечение обучения(перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы)

Основные источники:

- 1. Е. В. Михеева Информационные технологии в профессиональной деятельности / 11-е издание Academia, 2017г.
- 2. Азбука Приемы работы / электронный учебник АСКОН, 2017 г.
- 3. Михеева Е.В. Информационные технологии в профессиональной деятельности. Технические специальности: учебник для СПО / Е.В. Михеева, О.И. Титова. 3-е изд., стер. М.: Академия, 2016. 416с.
- 4. Е.П.Зимина, М.В. Васильев Применение комплекса САПР для разработки конструкторской документации в электронном виде / Электронный журнал «Труды МАИ». Выпуск № 45 Москва, 2018г.
- 5. Митрофанов С.П. Автоматизация технологической подготовки производства / С.П. Митрофанов, Ю.А. Гуньков, Д.Д. Куликов М.: Машиностроение, 2012 г.
- 6. Лукинских С.В. Создание комплекта конструкторских документов в САПР Компас / учебное электронное текстовое издание Екатеринбург, 2017 г.
- 7. Маштакова А.А. Методические рекомендации по выполнению практических занятий по дисциплине Информационные технологии в профессиональной деятельности, 2019г.

Дополнительные источники:

- 1. Arras, Peter. Course BASIC MCAD. Lessius, campus De Nayer 2011.-276 pp.
- 2. Arras, Peter. Course MCAD Advanced. Lessius, campus De Nayer, 2011. 127 pp.
- 3. Shih, Randy H. Parametric Modeling with Creo Parametric 1.0 / Randy H.Shih. SDC Publisher: StepherSchroff, 2011. 432 pp.
- 4. Минеев, M. A. Pro/Engineer Wildfire 2.0/3.0/4.0: самоучитель(+ DVD-ROM)/ М. А. Минеев. М.: Наукаитехника, 2008. 352 с.

- 5. Пархоменко А. В. Автоматизованепроектуванняелектронних засобів в середовищах: Навчальний посібник / А. В. Пархоменко, А. В. Притула, В. М. Крищук. Запоріжжя: Дике поле, 2013. 240 с.
- 6. Разработка геометрических моделей и чертежей деталей на базе системы CAD/CAM Pro/Engineer. Часть 1. / под ред. В.А.Зубкова.- М.: МГИУ, 2008. 216 с.
- 7. Степанов, Н. В. Pro/Engineer 2000i: курс пользователя/Н. В.

Интернет-ресурсы:

- 1. http://www.sapr.ru/ Журнал «САПР и графика»
- 2. http://www.cad.ru Все о САПР Динамично развивающийся портал по САПР
- 3. http://www.csa.ru/CSA/CADS/ CAD Laboratoryof IHPC&DB Страница Лаборатории САПР.
- 4. http://cad.ntu-kpi.kiev.ua Virtuallibraryat CAD/KPI Виртуальная библиотека Киевского политехнического института
- 5. http://www.cadmaster.ru/ CADmaster: информационный ресурс для профессионалов САПР http://www.cadcamcae.lv/ CAD/CAM/CAE Observer RedactionWords Новий профессиональный журнал по САПР
- 6. http://www.cae.ustu.ru/Специализированная лаборатория "Технопарк компьютерного инжиниринга" на база Уральского государственного технического университета
- 7. http://mt2.bmstu.ru/reference.phpСайт МВТУ им. БауманаГОСТы и СНиПы
- 8. http://sapr.km.ru/CAПР в машиностроенииМашиностроительные ГОСТы и ОСТы
- 9. http://stroyinf.ru/cgi-bin/mck/re.cgi?u=[0]infr.html Сертификация в России ГОСТы, СНи-Пы, РД и ISO
- 10. http://exkavator.ru/library/docs/gosts/eskd ГОСТы (ЕСКД, сварка и многое другое)
- 11. http://ascon.ru/

Отечественные журналы:

- 1. «Инструмент. Технология. Оборудование»;
- 2. «Информационные технологии»
- 3. Профессиональные информационные CAD/CAM/CAE/PDM системы.

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения дисциплины осуществляется преподавателемв процессе проведения практических занятий, тестирования, а также выполнения обучающимисяиндивидуальных заданий.

Результаты обучения (освоенные умения, усвоенные знания)

уметь:

- -оформлять конструкторскую и технологическую документацию с использованием специальных компьютерных программ;
- создавать трехмерные модели на основе чертежа;
- проектировать технологические процессы с использованием баз данных типовых технологических процессов в диалоговом, полуавтоматическом и автоматическом режимах;

знать:

- базовые, системные, программные продукты и пакеты прикладных программ;
- классы и виды CAD и CAM систем, их возможности и принципы функционирования;
- виды операций над 2D и 3D объектами, основы моделирования по сечениям и проекциям;
- способы создания и визуализации анимированных сцен.

Основные показатели оценки результата

Правильность создания и оформления конструкторской и технологической документации с использованием систем автоматизированного проектирования.

Корректность выполненных на основе чертежа трехмерных моделей в соответствии с действующими нормативами.

Соответствие результата спроектированного технологического процесса поставленной задаче.

Знание классификации и назначения компьютерных базовых, системных и прикладних программ.

Корректное пониманиеназначения и функциональных возможностей CAD и CAM систем.

Знание видов операций над 2D и 3D объектами и основ компьютерного моделирования изделий машиностроения.

Знание соответствующего задаче программного обеспечения и технологии работы в нём.